

Python Programming Workshop

C. David Sherrill
School of Chemistry and Biochemistry

Georgia Institute of Technology

List of Chapters
Chapter 1: Very Basic Stuff
Chapter 2: Conditionals
Chapter 3: Functions
Chapter 4: Iteration
Chapter 5: Strings
Chapter 6: Collection Data Types
Chapter 7: Advanced Functions
Chapter 8: Exception Handling
Chapter 9: Python Modules
Chapter 10: Files
Chapter 11: Documentation
Chapter 12: Classes
Chapter 13: CGI Programming

Disclaimers

I wrote this tutorial / introduction to Python while I
was learning it myself. Therefore, I cannot
speak from any significant experience with
Python, and these notes may contain factual
errors. I have tried all of the code examples that
I present. --C. D. Sherrill, January 2010

Resources
 These notes are based on information from several

sources:

 “Learning Python,” 2nd edition, Mark Lutz and David Ascher
(O'Reilly, Sebastopol, CA, 2004) (Thorough. Hard to get
into as a quick read)

 “Dive Into Python,” Mark Pilgrim (http://diveintopython.org,
2004)

 “How to Think Like a Computer Scientist: Learning with
Python,” 2nd edition, Jeffrey Elkner, Allen B. Downey, and
Chris Meyers (http://openbookproject.net//thinkCSpy/)

 “Programming in Python 3: A Complete Introduction to the
Python Language,” Mark Summerfeld (Addison-Wesley,
Boston, 2009)

 http://www.python.org

http://diveintopython.org/
http://openbookproject.net//thinkCSpy/

Why Python?

 High-level language, can do a lot with relatively
little code

 Supposedly easier to learn than its main
competitor, Perl

 Fairly popular among high-level languages
 Robust support for object-oriented programming
 Support for integration with other languages

Chapter 1: Very Basic Stuff

 Running python programs
 Variables
 Printing
 Operators
 Input
 Comments
 Scope

Very Basic Stuff
 You can run python programs from files, just

like perl or shell scripts, by typing “python
program.py” at the command line. The file can
contain just the python commands.

 Or, one can invoke the program directly by
typing the name of the file, “program.py”, if it
has as a first line something like
“#!/usr/bin/python” (like a shell script... works as
long as the file has execute permissions set)

 Alternatively, you can enter a python shell and
run python commands interactively, by typing
“python”

Hello, world!
 Let's get started! Here's an example of a python

program run as a script:

#!/usr/bin/python

print “Hello, world”

 If this is saved to a file hello.py, then set execute
permissions on this file (chmod u+x hello.py in
Unix/Linux), and run it with “./hello.py”

 When run, this program prints

Hello, world

More about printing

 >>> print 'hello:', x, x**2, x**3
hello: 4 16 64

 \t is a tab character
>>> print "2**2 =","\t",2**2
2**2 = 4

 Ending a print statement with a comma
suppresses the newline, so the next print
statement continues on the same line

 Can print to an open file (later) like this:
print >> outfile, message

Other fun stuff
 Example basics.py

#!/usr/bin/perl
print 1+3
pi = 3.1415926
print pi
message = "Hello, world"
print message

Output:
4
3.1415926
Hello, world

Variable types

 In the previous example, “pi” and “message” are variables,
but one is a floating point number, and the other is a string.
 Notice we didn't declare the types in our example. Python
has decided types for the variables, however.

 Actually, “variables” in python are really object references.
The reason we don't need to declare types is that a
reference might point to a different type later.

references.py:
x=42
y=”hello”
print x,y # prints 42 hello
print x,y # prints 42 42

Variable types
 Example types.py:

pi = 3.1415926
message = "Hello, world"
i = 2+2

print type(pi)
print type(message)
print type(i)

Output:
<type 'float'>
<type 'str'>
<type 'int'>

Variable names

 Can contain letters, numbers, and underscores
 Must begin with a letter
 Cannot be one of the reserved Python

keywords: and, as, assert, break, class,
continue, def, del, elif, else, except, exec,
finally, for, from, global, if, import, in, is, lambda,
not, or, pass, print, raise, return, try, while, with,
yield

More on variable names

 Names starting with one underscore (_V) are
not imported from the module import *
statement

 Names starting and ending with 2 underscores
are special, system-defined names (e.g.,
__V__)

 Names beginning with 2 underscores (but
without trailing underscores) are local to a class
(__V)

 A single underscore (_) by itself denotes the
result of the last expression

Operators

 + addition
 - subtraction
 / division
 ** exponentiation
 % modulus (remainder after division)
 Comparison operators in Chapter 2

Operators
 Example operators.py

print 2*2
print 2**3
print 10%3
print 1.0/2.0
print 1/2

Output:
4
8
1
0.5
0

 Note the difference between floating point division and
integer division in the last two lines

+= but not ++

 Python has incorporated operators like +=, but
++ (or --) do not work in Python

Type conversion
 int(), float(), str(), and

bool() convert to
integer, floating point,
string, and boolean
(True or False) types,
respectively

 Example typeconv.py:
print 1.0/2.0
print 1/2
print float(1)/float(2)
print int(3.1415926)
print str(3.1415926)
print bool(1)
print bool(0)

 Output:
0.5
0
0.5
3
3.1415926
True
False

Operators acting on strings

 >>> "Ni!"*3
'Ni!Ni!Ni!'

 >>> "hello " + "world!"
'hello world!'

Input from keyboard
 Example input.py

i = raw_input("Enter a math expression: ")
print i
j = input("Enter the same expression: ")
print j

Output:
localhost(workshop)% ./input.py
Enter a mathematical expression: 3+2
3+2
Enter the same expression: 3+2
5

Comments

 Anything after a # symbol is treated as a
comment

 This is just like Perl

Chapter 2: Conditionals

 True and False booleans
 Comparison and Logical Operators
 if, elif, and else statements

Booleans: True and False

 >>> type (True)
<type 'bool'>
>>> type (true)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'true' is not defined
>>> 2+2==5
False

 Note: True and False are of type bool. The
capitalization is required for the booleans!

Boolean expressions

 A boolean expression can be evaluated as True
or False. An expression evaluates to False if it
is...
the constant False, the object None, an empty
sequence or collection, or a numerical item of
value 0

 Everything else is considered True

Comparison operators

 == : is equal to?
 != : not equal to
 > : greater than
 < : less than
 >= : greater than or equal to
 <= : less than or equal to
 is : do two references refer to the same object?

(See Chapter 6)

More on comparisons

 Can “chain” comparisons:
>>> a = 42
>>> 0 <= a <= 99
True

Logical operators

 and, or, not

>>> 2+2==5 or 1+1==2
True
>>> 2+2==5 and 1+1==2
False
>>> not(2+2==5) and 1+1==2
True

 Note: We do NOT use &&, ||, !, as in C!

If statements

 Example ifelse.py

if (1+1==2):
 print "1+1==2"
 print "I always thought so!"
else:
 print "My understanding of math must be faulty!"

 Simple one-line if:
if (1+1==2): print “I can add!”

elif statement

 Equivalent of “else if” in C
 Example elif.py:

x = 3
if (x == 1):
 print "one"
elif (x == 2):
 print "two"
else:
 print "many"

Chapter 3: Functions

 Defining functions
 Return values
 Local variables
 Built-in functions
 Functions of functions
 Passing lists, dictionaries, and keywords to

functions

Functions
 Define them in the file above the point they're

used
 Body of the function should be indented

consistently (4 spaces is typical in Python)
 Example: square.py

def square(n):
 return n*n

print "The square of 3 is ",
print square(3)

Output:
The square of 3 is 9

The def statement

 The def statement is excecuted (that's why
functions have to be defined before they're
used)

 def creates an object and assigns a name to
reference it; the function could be assigned
another name, function names can be stored in
a list, etc.

 Can put a def statement inside an if statement,
etc!

More about functions

 Arguments are optional. Multiple arguments
are separated by commas.

 If there's no return statement, then “None” is
returned. Return values can be simple types or
tuples. Return values may be ignored by the
caller.

 Functions are “typeless.” Can call with
arguments of any type, so long as the
operations in the function can be applied to the
arguments. This is considered a good thing in
Python.

Function variables are local
 Variables declared in a function do not exist outside

that function
 Example square2.py

def square(n):
 m = n*n
 return m

print "The square of 3 is ",
print square(3)
print m

Output:
 File "./square2.py", line 9, in <module>
 print m
NameError: name 'm' is not defined

Scope
 Variables assigned within a function are local to that

function call
 Variables assigned at the top of a module are global to

that module; there's only “global” within a module
 Within a function, Python will try to match a variable

name to one assigned locally within the function; if that
fails, it will try within enclosing function-defining (def)
statements (if appropriate); if that fails, it will try to
resolve the name in the global scope (but the variable
must be declared global for the function to be able to
change it). If none of these match, Python will look
through the list of built-in names

Scope example

 scope.py

a = 5 # global

def func(b):
 c = a + b
 return c

print func(4) # gives 4+5=9
print c # not defined

Scope example

 scope.py

a = 5 # global

def func(b):
 global c
 c = a + b
 return c

print func(4) # gives 4+5=9
print c # now it's defined (9)

By value / by reference

 Everything in Python is a reference. However,
note also that immutable objects are not
changeable --- so changes to immutable
objects within a function only change what
object the name points to (and do not affect the
caller, unless it's a global variable)

 For immutable objects (e.g., integers, strings,
tuples), Python acts like C's pass by value

 For mutable objects (e.g., lists), Python acts like
C's pass by pointer; in-place changes to
mutable objects can affect the caller

Example

 passbyref.py

def f1(x,y):
 x = x * 1
 y = y * 2
 print x, y # 0 [1, 2, 1, 2]

def f2(x,y):
 x = x * 1
 y[0] = y[0] * 2
 print x, y # 0 [2, 2]

a = 0
b = [1,2]
f1(a,b)
print a, b # 0 [1, 2]
f2(a,b)
print a, b # 0 [2, 2]

Multiple return values

 Can return multiple values by packaging them
into a tuple

def onetwothree(x):
 return x*1, x*2, x*3

print onetwothree(3)

3, 6, 9

Built-in Functions

 Several useful built-in functions. Example
math.py

print pow(2,3)
print abs(-14)
print max(1,-5,3,0)

Output:
8
14
3

Functions of Functions

 Example funcfunc.py
def iseven(x,f):
 if (f(x) == f(-x)):
 return True
 else:
 return False

def square(n):
 return(n*n)

def cube(n):
 return(n*n*n)

print iseven(2,square)
print iseven(2,cube)

 Output:
True
False

Default arguments

 Like C or Java, can define a function to supply a
default value for an argument if one isn't
specified

def print_error(lineno, message=”error”):
 print “%s at line %d” % (message, lineno)

print_error(42)

error at line 42

Functions without return values

 All functions in Python return something. If a
return statement is not given, then by default,
Python returns None

 Beware of assigning a variable to the result of a
function which returns None. For example, the
list append function changes the list but does
not return a value:
a = [0, 1, 2]
b = a.append(3)
print b
None

Chapter 4: Iteration

 while loops
 for loops
 range function
 Flow control within loops: break, continue, pass,

and the “loop else”

while

 Example while.py

i=1
while i < 4:
 print i
 i += 1

Output:
1
2
3

for

 Example for.py

for i in range(3):
 print i,

output:
 0, 1, 2

 range(n) returns a list of integers from 0 to n-1.
range(0,10,2) returns a list 0, 2, 4, 6, 8

Flow control within loops

 General structure of a loop:
while <statement> (or for <item> in <object>):
 <statements within loop>
 if <test1>: break # exit loop now
 if <test2>: continue # go to top of loop now
 if <test3>: pass # does nothing!
else:
 <other statements> # if exited loop without
 # hitting a break

Using the “loop else”

 An else statement after a loop is useful for
taking care of a case where an item isn't found
in a list. Example: search_items.py:

for i in range(3):
 if i == 4:
 print "I found 4!"
 break
 else:
 print "Don't care about",i
else:
 print "I searched but never found 4!"

for ... in

 Used with collection data types (see Chapter 6)
which can be iterated through (“iterables”):

for name in [“Mutasem”, “Micah”, “Ryan”]:
 if name[0] == “M”:
 print name, “starts with an M”
 else:
 print name, “doesn't start with M”

 More about lists and strings later on

Parallel traversals

 If we want to go through 2 lists (more later) in
parallel, can use zip:
A = [1, 2, 3]
B = [4, 5, 6]
for (a,b) in zip(A,B):
 print a, “*”, b, “=”, a*b

output:
1 * 4 = 4
2 * 5 = 10
3 * 6 = 18

Chapter 5: Strings

 String basics
 Escape sequences
 Slices
 Block quotes
 Formatting
 String methods

String basics
 Strings can be delimited by single or double quotes
 Python uses Unicode, so strings are not limited to ASCII

characters
 An empty string is denoted by having nothing between

string delimiters (e.g., '')
 Can access elements of strings with [], with indexing

starting from zero:
>>> “snakes”[3]
'k'

 Note: can't go other way --- can't set “snakes”[3] = 'p' to
change a string; strings are immutable

 a[-1] gets the last element of string a (negative indices
work through the string backwards from the end)

 Strings like a = r'c:\home\temp.dat' (starting with an r
character before delimiters) are “raw” strings (interpret
literally)

More string basics
 Type conversion:

>>> int(“42”)
42
>>> str(20.4)
'20.4'

 Compare strings with the is-equal operator, ==
(like in C and C++):
>>> a = “hello”
>>> b = “hello”
>>> a == b
True

 >>>location = “Chattanooga “ + “Tennessee”
>>>location
Chattanooga Tennessee

Escape sequences

 Escape Meaning
\\ \
\' '
\” “
\n newline
\t tab
\N{id} unicode dbase id
\uhhhh unicode 16-bit hex
\Uhhhh... Unicode 32-bit hex
\x Hex digits value hh
\0 Null byte (unlike C, doesn't end
 string)

Block quotes

 Multi-line strings use triple-quotes:
>>> lincoln = “””Four score and seven years
... ago our fathers brought forth on this
... continent, a new nation, conceived in
... Liberty, and dedicated to the proposition
... that all men are created equal.”””

String formatting

 Formatting syntax:
format % object-to-format

>>> greeting = “Hello”
>>> “%s. Welcome to python.” % greeting
'Hello. Welcome to python.'

 Note: formatting creates a new string (because strings are immutable)
 The advanced printf-style formatting from C works. Can format multiple

variables into one string by collecting them in a tuple (comma-separated list
delimited by parentheses) after the % character:

>>> “The grade for %s is %4.1f” % (“Tom”, 76.051)
'The grade for Tom is 76.1'

 String formats can refer to dictionary keys (later):
>>> “%(name)s got a %(grade)d” % {“name”:”Bob”, “grade”:82.5}
 'Bob got a 82'

Stepping through a string

 A string is treated as a collection of characters,
and so it has some properties in common with
other collections like lists and tuples (see
below).

 >>> for c in “snakes”: print c,
...
s n a k e s

 >>> 'a' in “snakes”
True

Slices

 Slice: get a substring from position i to j-1:
>>> “snakes”[1:3]
'na'

 Both arguments of a slice are optional; a[:] will
just provide a copy of string a

String methods
 Strings are classes with many built-in methods.

Those methods that create new strings need to
be assigned (since strings are immutable, they
cannot be changed in-place).

 S.capitalize()
 S.center(width)
 S.count(substring [, start-idx [, end-idx]])
 S.find(substring [, start [, end]]))
 S.isalpha(), S.isdigit(), S.islower(), S.isspace(),

S.isupper()
 S.join(sequence)
 And many more!

 replace method

 Doesn't really replace (strings are immutable)
but makes a new string with the replacement
performed:
>>> a = “abcdefg”
>>> b = a.replace('c', 'C')
>>> b
abCdefg
>>> a
abcdefg

More method examples
 methods.py:

a = “He found it boring and he left”
loc = a.find(“boring”)
a = a[:loc] + “fun”
print a

b = ' and '.join([“cars”, “trucks”, “motorcycles”])
print b

c = b.split()
print c

d = b.split(“ and “)
print d

Output:

He found it fun
cars and trucks and motorcycles
['cars', 'and', 'trucks', 'and', 'motorcycles']
['cars', 'trucks', 'motorcycles']

Regular Expressions

• Regular expressions are a way to do pattern-
matching. The basic concept (and most of the
syntax of the actual regular expression) is the
same in Java or Perl

Regular Expression Syntax

• Common regular expression syntax:
. Matches any char but newline (by default)
^ Matches the start of a string
$ Matches the end of a string

 * Any number of what comes before this
+ One or more of what comes before this
| Or
\w Any alphanumeric character
\d Any digit
\s Any whitespace character

 (Note: \W matches NON-alphanumeric, \D NON digits, etc)

 [aeiou] matches any of a, e, i, o, u
junk Matches the string 'junk'

Simple Regexp Example

import re #import the regular expression module

infile = open("test.txt", 'r')
lines = infile.readlines()
infile.close()

replace all PSI3's with PSI4's
matchstr = re.compile(r"PSI3",

re.IGNORECASE)
for line in lines:
 line = matchstr.sub(r'PSI4', line)
 print line,

Simple Regexp Example
• In the previous example, we open a file and read in all the

lines (see upcoming chapter), and we replace all PSI3
instances with PSI4

• The regular expression module needs to be imported

• We need to “compile” the regular expression with
re.compile(). The “r” character here and below means treat
this as a “raw” string (saves us from having to escape
backslash characters with another backslash)

• re.IGNORECASE (re.I) is an optional argument. Another
would be re.DOTALL (re.S; dot would match newlines; by
default it doesn't). Another is re.MULTILINE (re.M), which
makes ^ and $ match after and before each line break in a
string

More about Regexps

• The re.compile() step is optional (more efficient if doing a lot of regexps

• Can do re.search(regex, subject) or re.match(regex, subject) as
alternative syntax

• re.match() only looks for a match at the beginning of a line; does not need
to match the whole string, just the beginning

• re.search() attempts to match throughout the string until it finds a match

• re.findall(regex, subject) returns an array of all non-overlapping matches;
alternatively, can do
for m in re.finditer(regex, subject)

• Match(), search(), finditer(), and findall() do not support the optional third
argument of regex matching flags; can start regex with (?i), (?s), (?m), etc,
instead

re.split()

• re.split(regex, subject) returns an array of strings. The strings
are all the parts of the subject besides the parts that match. If
two matches are adjacent in the subject, then split() will
include an empty string.

• Example:
line = “Upgrade the PSI3 program to PSI4. PSI3 was an
excellent program.”
 matchstr = re.split(“PSI3”, line)
 for i in matchstr:
 print i
>>> Upgrade the
>>> program to PSI4.
>>> was an excellent program.

Match Object Funtions

• Search() and match() return a MatchObject.
This object has some useful functions:
group(): return the matched string
 start(): starting position of the match
 end(): ending position of the match
 span(): tuple containing the (start,end)
positions of the match

Match Object Example

line = "Now we are upgrading the PSI3 program"

matchstr = re.search("PSI3", line)

print "Match starts at character ", matchstr.start()

print "Match ends at character ", matchstr.end()

print "Before match: ", line[0:matchstr.start()]

print "After match:", line[matchstr.end():]

Capture Groups

• Parentheses in a regular expression denote
“capture groups” which can be accessed by
number or by name to get the matching
(captured) text

• We can name the capture groups with (?
P<name>)

• We can also take advantage of triple-quoted
strings (which can span multiple lines) to
define the regular expression (which can
include comments) if we use the re.VERBOSE
option

Capture Groups Example
infile = open("test.txt", 'r')

lines = infile.readlines()

infile.close()

triple quoted string can span multiple lines

restring = """[\t]* # optional whitespace at beginning

 (?P<key>\w+) # name the matching word 'key'

 [\t]*=[\t]* # equals sign w/ optional whitespace

 (?P<value>.+) # some non-whitespace after = is 'value'

 """

matchstr = re.compile(restring, re.IGNORECASE | re.VERBOSE)

for line in lines:

 for match in matchstr.finditer(line):

 print "key =", match.group("key"),

 print ", value =", match.group("value")

Chapter 6: Collection Data Types

 Tuples
 Lists
 Dictionaries

Tuples

 Tuples are a collection of data items. They may
be of different types. Tuples are immutable like
strings. Lists are like tuples but are mutable.

>>>“Tony”, “Pat”, “Stewart”
('Tony', 'Pat', 'Stewart')
Python uses () to denote tuples; we could also
use (), but if we have only one item, we need to
use a comma to indicate it's a tuple: (“Tony”,).

 An empty tuple is denoted by ()
 Need to enclose tuple in () if we want to pass it

all together as one argument to a function

Lists

 Like tuples, but mutable, and designated by
square brackets instead of parentheses:
>>> [1, 3, 5, 7, 11]
[1, 3, 5, 7, 11]
>>> [0, 1, 'boom']
[0, 1, 'boom']

 An empty list is []
 Append an item:

>>> x = [1, 2, 3]
>>> x.append(“done”)
>>> print x
[1, 2, 3, 'done']

Lists and Tuples Contain Object
References

 Lists and tuples contain object references.
Since lists and tuples are also objects, they can
be nested

>>> a=[0,1,2]
>>> b=[a,3,4]
>>> print b
[[0, 1, 2], 3, 4]
>>> print b[0][1]
1
>>> print b[1][0]
... TypeError: 'int' object is unsubscriptable

List example

 list-example.py:
x=[1,3,5,7,11]
print x
print "x[2]=",x[2]
x[2] = 0
print "Replace 5 with 0, x = ", x
x.append(13)
print "After append, x = ", x
x.remove(1) # removes the 1, not the item at position 1!!
print "After remove item 1, x = ", x
x.insert(1,42)
print "Insert 42 at item 1, x = ", x

Output:
[1, 3, 5, 7, 11]
x[2]= 5
Replace 5 with 0, x = [1, 3, 0, 7, 11]
After append, x = [1, 3, 0, 7, 11, 13]
After remove item 1, x = [3, 0, 7, 11, 13]
Insert 42 at item 1, x = [3, 42, 0, 7, 11, 13]

Indexing
 Indexing for a list

>>> x=[1,3,5,7,11]
>>> x[2]
5
>>> x[2]=0
>>> x
[1, 3, 0, 7, 11]

 Can index a tuple the same way, but can't
change the values because tuples are
immutable

 Slices work as for strings (recall last index of
slice is not included)
>>> x[2:4]
[0,7]

The += operator for lists

 >>> a = [1, 3, 5]
>>> a += [7] # a += 7 fails
>>> a
[1, 3, 5, 7]
>>> a += [“the-end”] # put this in [] also!
>>>a
[1, 3, 5, 7, 'the-end']

Dictionaries

 Unordered collections where items are
accessed by a key, not by the position in the list

 Like a hash in Perl
 Collection of arbitrary objects; use object

references like lists
 Nestable
 Can grow and shrink in place like lists
 Concatenation, slicing, and other operations

that depend on the order of elements do not
work on dictionaries

Dictionary Construction and Access
 Example:

>>> jobs = {'David':'Professor',
'Sahan':'Postdoc', 'Shawn':'Grad student'}
>>> jobs['Sahan']
>>> 'Postdoc'

 Can change in place
>>> jobs['Shawn'] = 'Postdoc'
>>> jobs['Shawn']
'Postdoc'

 Lists of keys and values
>>> jobs.keys()
['Sahan', 'Shawn', 'David'] # note order is diff
>>> jobs.values()
['Postdoc', 'Postdoc', 'Professor']
>>> jobs.items()
[('Sahan', 'Postdoc'), ('Shawn', 'Postdoc'),
('David', 'Professor')]

Common Dictionary Operations

 Delete an entry (by key)
del d['keyname']

 Add an entry
d['newkey'] = newvalue

 See if a key is in dictionary
d.has_key('keyname') or 'keyname' in d

 get() method useful to return value but not fail
(return None) if key doesn't exist (or can
provide a default value)
d.get('keyval', default)

 update() merges one dictionary with another
(overwriting values with same key)
d.update(d2) [the dictionary version of
concatenation]

Dictionary example

 Going through a dictionary by keys:

bookauthors = {'Gone with the Wind':
'Margaret Mitchell',
 'Aeneid': 'Virgil',
 'Odyssey': 'Homer'}

for book in bookauthors:
 print book, 'by', bookauthors[book]

output:
Gone with the Wind by Margaret Mitchell
Aeneid by Virgil
Odyssey by Homer

Constructing dictionaries from lists

 If we have separate lists for the keys and
values, we can combine them into a dictionary
using the zip function and a dict constructor:

keys = ['david', 'chris', 'stewart']
values = ['504', '637', '921']
D = dict(zip(keys, vals))

More general keys

 Keys don't have to be strings; they can be any
immutable data type, including tuples

 This might be good for representing sparse
matrices, for example

Matrix = {} # start a blank dictionary
Matrix[(1,0,1)] = 0.5 # key is a tuple
Matrix[(1,1,4)] = 0.8

Length of collections

 len() returns the length of a tuple, list, or
dictionary (or the number of characters of a
string):
>>>len((“Tony”,))
1
>>>len(“Tony”)
4
>>>len([0, 1, 'boom'])
3

The “is” operator

 Python “variables” are really object references.
The “is” operator checks to see if these
references refer to the same object (note: could
have two identical objects which are not the
same object...)

 References to integer constants should be
identical. References to strings may or may not
show up as referring to the same object. Two
identical, mutable objects are not necessarily
the same object

is-operator.py
 x = "hello"

y = "hello"
print x is y True here, not nec.

x = [1,2]
y = [1,2]
print x is y False (even though ident)

x = (1,2)
y = (1,2)
print x is y False (even though
 identical, immutable)

x = []
print x is not None True (list, even though
 empty)

“in” operator

 For collection data types, the “in” operator
determines whether something is a member of
the collection (and “not in” tests if not a
member):
>>> team = (“David”, “Robert”, “Paul”)
>>> “Howell” in team
False
>>> “Stewart” not in team
True

Iteration: for ... in

 To traverse a collection type, use for ... in
>>> numbers = (1, 2, 3)
>>> for i in numbers: print i,
...
1 2 3

Copying collections

 Using assignment just makes a new reference
to the same collection, e.g.,
A = [0,1,3]
B = A # B is a ref to A. Changing B will
 # change A
C = A[:] # make a copy
B[1] = 5
C[1] = 7
A, B, C
([0, 5, 3], [0, 5, 3], [0, 7, 3])

 Copy a dictionary with A.copy()

Chapter 7: Advanced Functions

 Passing lists and keyword dictionaries to
functions

 Lambda functions
 apply()
 map()
 filter()
 reduce()
 List comprehensions

Passing lists as arguments

 Lists can be passed in cases where there may
be a variable number of arguments

listarg.py:

def sum(*args):
 result = 0
 for arg in args:
 result += arg
 return result

print sum(1,2,3)
6

Keyword arguments

 The caller of a function can place the
arguments in the correct order (“positional
arguments”), but alternatively, some arguments
can be designated by keywords

 Note: this example calls the function with the
arguments in the wrong order, but the
arguments are passed with keyword syntax so
it doesn't matter:

def print_hello(firstname="", lastname=""):
 print "Hello, %s %s" % (firstname, lastname)

print_hello(lastname="Sherrill",
 firstname="David")

Hello, David Sherrill

Mixing keyword and positional
arguments

 Another use of the * operator is to designate
that all arguments after it must be keyword
arguments

 This is new to Python 3?

def area(x, y, *, units=”inches”):
 print x*y, “square %s” % units

area(2,3,”centimeters”)
6 square centimeters

Passing dictionaries to functions

 Dictionaries will be discussed later

dict-args.py:

def print_dict(**kwargs):
 for key in kwargs.keys():
 print "%s = %s" % (key, kwargs[key])

user_info = dict(name="David", uid=593,
homedir="/home/users/david")

print_dict(**user_info) # note: need ** here!!

output: (note: dictionary entries are unordered)
uid = 593
name = David
homedir = /home/users/david

Dictionary arguments

 Note: dictionaries can be passed as arguments
even to “normal” functions wanting positional
arguments!

dict-args.py:

def area(x, y, units="inches"):
 print x*y, "square %s" % units

area_info = dict(x=2, y=3, units="centimeters")
area(**area_info)

output: 6 square centimeters

Lambda functions

 Shorthand version of def statement, useful for
“inlining” functions and other situations where
it's convenient to keep the code of the function
close to where it's needed

 Can only contain an expression in the function
definition, not a block of statements (e.g., no if
statements, etc)

 A lambda returns a function; the programmer
can decide whether or not to assign this
function to a name

Lambda example

 Simple example:

>>> def sum(x,y): return x+y
>>> ...
>>> sum(1,2)
3
>>> sum2 = lambda x, y: x+y
>>> sum2(1,2)
3

apply()

 In very general contexts, you may not know
ahead of time how many arguments need to get
passed to a function (perhaps the function itself
is built dynamically)

 The apply() function calls a given function with
a list of arguments packed in a tuple:
def sum(x, y): return x+y
apply(sum, (3, 4))
7

 Apply can handle functions defined with def or
with lambda

More general apply()

 Apply can take a third argument which is a dictionary
of keyword arguments

def nameargs(*args, **kwargs): print args, kwargs
args = (1.2, 1.3)
kargs = {'a': 2.1, 'b': 3.4}
apply(nameargs, args, kwargs)
(1.2, 1.3) {'a': 2.1000, 'b': 3.4000}

map

 Map calls a given function on every element of
a sequence

 map.py:
def double(x): return x*2
a = [1, 2, 3]
print map(double, a)
[2, 4, 6]

 Alternatively:
print map((lambda x: x*2), a)
[2, 4, 6]

More map

 Can also apply a map to functions taking more
than one argument; then work with two or more
lists

print map((lambda x, y: x+y), [1,2,3], [4,5,6])
[5,7,9]

filter

 Like map, the filter function works on lists.
Unlike map, it returns only a selected list of
items that matches some criterion.

 Get only even numbers:
filter((lambda x: x%2==0), range(-4,4))
[-4, -2, 0, 2] # recall range doesn't include last
 # value given in range

reduce

 Reduce is like map but it reduces a list to a
single value (each operation acts on the result
of the last operation and the next item in the
list):

reduce((lambda x, y: x+y), [0, 1, 2, 3, 4])
10

List comprehensions

 These aren't really functions, but they can
replace functions (or maps, filters, etc)
>>> [x**2 for x in range(9)]
[0, 1, 4, 9, 16, 25, 36, 49, 64]
>>> [x**2 for x in range(10) if x%2 == 0]
[0, 4, 16, 36, 64]
>>> [x+y for x in [1,2,3] for y in [100,200,300]]
[101, 201, 301, 102, 202, 302, 103, 203, 303]

Generators and Iterators

 Sometimes it may be useful to return a single
value at a time, instead of an entire sequence.
A generator is a function which is written to
return values one at a time. The generator can
compute the next value, save its state, and then
pick up again where it left off when called again.

 Syntactically, the generator looks just like a
function, but it “yields” a value instead of
returning one (a return statement would
terminate the sequence)

Generator example

 >>> def squares(x):
... for i in range(x):
... yield i**2
>>> for i in squares(4):
... print i,
...
0 1 4 9

 Can get next element in sequence from the next() function:

z = squares(4)
z.next()
0
z.next()
1

Persistence of mutable default
arguments

 Mutable default arguments persist between
calls to the function (like static variables in C)

 This may not be the behavior desired
 If not, copy the default at the start of the

function body to another variable, or move the
default value expression into the body of the
function

Chapter 8: Exception Handling

 Basics of exception handling

Basic Exception Handling
 An “exception” is a (recognized type of) error, and

“handling” is what you do when that error occurs
 General syntax:

try:
 code-you-want-to-run
except exception1 [as variable1]:
 exception1 block
...
except exceptionN [as variableN]:
 exceptionN block

 If an error occurs, if it's of exception type 1, then variable1
becomes an alias to the exception object, and then
exception1 block executes. Otherwise, Python tries
exception types 2 ... N until the exception is caught, or else
the program stops with an unhandled exception (a
traceback will be printed along with the exception's text)

 The optional [as variable] will not work with older Python

Exception example

 value-error.pl

try:
 i = int("snakes")
 print "the integer is", i
except ValueError:
 print "oops! invalid value"

Other exceptions

 EOFError is raised at the end of a file
 IndexError happens if we use an invalid index

for a string/collection, e.g., if we try to get
argv[1] if there is only one command-line
argument (counting starts from zero)

 TypeError happens when, e.g., comparing two
incomparable types

Chapter 9: Python Modules

 Basics of modules
 Import and from … import statements
 Changing data in modules
 Reloading modules
 Module packages
 __name__ and __main__
 Import as statement

Module basics

 Each file in Python is considered a module. Everything
within the file is encapsulated within a namespace (which
is the name of the file)

 To access code in another module (file), import that file,
and then access the functions or data of that module by
prefixing with the name of the module, followed by a period

 To import a module:
 import sys
(note: no file suffix)

 Can import user-defined modules or some “standard”
modules like sys and random

 Any python program needs one “top level” file which
imports any other needed modules

Python standard library

 There are over 200 modules in the Standard
Library

 Consult the Python Library Reference Manual,
included in the Python installation and/or
available at http://www.python.org

http://www.python.org/

What import does

 An import statement does three things:
- Finds the file for the given module
- Compiles it to bytecode
- Runs the module's code to build any objects (top-
level code, e.g., variable initialization)

 The module name is only a simple name; Python uses
a module search path to find it. It will search: (a) the
directory of the top-level file, (b) directories in the
environmental variable PYTHONPATH, (c) standard
directories, and (d) directories listed in any .pth files
(one directory per line in a plain text file); the path can
be listed by printing sys.path

The sys module

 Printing the command-line arguments,
print-argv.pl

import sys

cmd_options = sys.argv
i = 0
for cmd in cmd_options:
 print "Argument ", i, "=", cmd
 i += 1

output:
localhost(Chapter8)% ./print-argv.pl test1 test2
Argument 0 = ./print-argv.pl
Argument 1 = test1
Argument 2 = test2

The random module

 import random

guess = random.randint(1,100)
print guess
dinner = random.choice([“meatloaf”, “pizza”,
“chicken pot pie”])
print dinner

Import vs from ... import

 Import brings in a whole module; you need to qualify
the names by the module name (e.g., sys.argv)

 “import from” copies names from the module into the
current module; no need to qualify them (note: these
are copies, not links, to the original names)

from module_x import junk
junk() # not module_x.junk()

from module_x import * # gets all top-level
 # names from module_x

Changing data in modules

 Reassigning a new value to a fetched name from a
module does not change the module, but changing a
mutable variable from a module does:

from module_x import x,y

x = 30 # doesn't change x in module_x
y[0] = 1 # changes y[0] in module_x

 This works just like functions
 To actually change a global name in another file, could

use import (without “from”) and qualify the variable:
module_x.x = 30 (but this breaks data encapsulation)

Reloading modules

 A module's top-level code is only run the first time the
module is imported. Subsequent imports don't do
anything.

 The reload function forces a reload and re-run of a
module; can use if, e.g., a module changes while a
Python program is running

 reload is passed an existing module object
reload(module_x) # module_x must have been
 # previously imported

 reload changes the module object in-place
 reload does not affect prior from..import statements

(they still point to the old objects)

Module Packages
 When using import, we can give a directory

path instead of a simple name. A directory of
Python code is known as a “package”:
import dir1.dir2.module
or
from dir1.dir2.module import x
will look for a file dir1/dir2/module.py

 Note: dir1 must be within one of the directories
in the PYTHONPATH

 Note: dir1 and dir2 must be simple names, not
using platform-specific syntax (e.g., no C:\)

Package __init__.py files

 When using Python packages (directory path syntax for
imports), each directory in the path needs to have an
__init__.py file

 The file could be blank

 If not blank, the file contains Python code; the first time Python
imports through this directory, it will run the code in the
__init__.py file

 In the dir1.dir2.module example, a namespace dir1.dir2 now
exists which contains all names assigned by dir2's __init__.py
file

 The file can contain an “__all__” list which specifies what is
exported by default when a directory is imported with the from*
statement

Data encapsulation

 By default, names beginning with an
underscore will not be copied in an import
statement (they can still be changed if
accessed directly)

 Alternatively, one can list the names to be
copied on import by assigning them to a list
called __all__:
__all__ = [“x1”, “y1”, “z1”] # export only these
this list is only read when using the from *
syntax

__name__ and __main__

 When a file is run as a top-level program, it's
__name__ is set to “__main__” when it starts

 If a file is imported, __name__ is set to the
name of the module as the importer sees it

 Can use this to package a module as a library,
but allow it to run stand-alone also, by checking
if __name__ == '__main__':
 do_whatever() # run in stand-alone mode

Import as

 You can rename a module (from the point of
view of the importer) by using:
import longmodulename as shortname,
where shortname is the alias for the original
module name

 Using this syntax requires you to use the short
name thereafter, not the long name

 Can also do
from module import longname as name

Reload may not affect “from”
imports

 From copies names, and does not retain a link
back to the original module

 When reload is run, it changes the module, but
not any copies that were made on an original
from module import XX
statement

 If this is a problem, import the entire module
and use name qualification (module.XX) instead

Chapter 10: Files

 Basic file operations

Opening a file

 open(filename, mode)
where filename is a Python string, and mode is
a Python string, 'r' for reading, 'w' for writing, or
'a' for append

Basic file operations

 Basic operations:

outfile = open('output.dat', 'w')
infile = open('input.dat', r')

Basic file operations
 Basic operations

output = open('output.dat', 'w')
input = open('input.dat', 'r')

A = input.read() # read whole file into string
A = input.read(N) # read N bytes
A = input.readline() # read next line
A = input.readlines() # read file into list of
 # strings

output.write(A) # Write string A into file
output.writelines(A) # Write list of strings
output.close() # Close a file

Redirecting stdout

 Print statements normally go to stdout
(“standard output,” i.e., the screen)

 stdout can be redirected to a file:

import sys
sys.stdout = open('output.txt', 'w')
print message # will show up in output.txt

 Alternatively, to print just some stuff to a file:
print >> logfile, message # if logfile open

Examples of file parsing

Whole thing at once:

infile = open(“test.txt”, 'r')
lines = infile.readlines()
infile.close()

for line in lines:
 print line,

Line-by-line (shortcut syntax avoiding readline calls):

infile = open(“test.txt”, 'r')

for line in infile
 print line,

infile.close()

Chapter 11: Documentation

 Comments
 dir
 Documentation strings

Comments

 As we've seen, anything after a # character is
treated as a comment

dir
 The dir function prints out all the attributes of an

object (see later)

>>> import sys
>>> dir(sys)
['__displayhook__', '__doc__',
'__excepthook__', '__name__', '__stderr__',
'__stdin__', '__stdout__', '_current_frames',
'_getframe', 'api_version', 'argv',
...
>>> dir([]) # a list
['__add__', '__class__', '__contains__', ... ,
'append', 'count', 'extend', 'index', ...]

docstrings
 Strings at the top of module files, the top of functions,

and the top of classes become “docstrings” which are
automatically inserted into the __doc__ attribute of the
object

 Can use regular single or double quotes to delimit the
string, or can use triple quotes for a multi-line string

 e.g.,:
def sum(x, y):
 “This function just adds two numbers”
 return x+y

print sum.__doc__
This function just adds two numbers

Docstrings for built-in objects

 Can print the docstrings for built-in Python
objects

>>> import sys
>>> print sys.__doc__

PyDoc

 PyDoc is a tool that can extract the docstrings
and display them nicely, either via the help
command, or via a GUI/HTML interface
>>> help(list)

Documentation on the web

 Check out www.python.org

Chapter 12: Classes

 Introduction to classes
 stuff
 junk

Introduction to Classes
• A “class” is a user-defined data type. It contains (or

encapsulates) certain “member data,” and it also has
associated things it can do, or “member functions.”

• If a class is a specialization (or sub-type) of a more general
class, it is said to inherit from that class; this can give a class
access to a parent class' member data/functions

• These general concepts are basically the same in C++, Java,
etc.

• Classes are built into Python from the beginning. For object-
oriented programming (i.e., programming using classes),
Python is superior in this sense to Perl

Defining Classes

• A class is defined by:
 class classname:
 suite-of-code

or
 class classname(base_classes):
 suite-of-code

• The class definition suite (code block) can
contain member function definitions, etc.

• base_classes would contain any classes that
this class inherits from

Member Data Scope

• Class attributes (member data) defined in the
class definition itself are common to the class
(note: the code block in a class definition
actually runs the first time the class definition
is encountered, and not when class objects
are instantiated)

• Class attributes defined for a specific object of
a certain class are held only with that
particular object (often set using the “self”
keyword, see below)

Class Example
class Student:

 course = "CHEM 3412"

 def __init__(self, name, test1=0, test2=0):

 self.name = name

 self.test1 = test1

 self.test2 = test2

 def compute_average(self):

 return ((self.test1 + self.test2)/2)

 def print_data(self):

 print "The grade for %s in %s is %4.1f" % \

 (self.name, self.course, self.compute_average())

David = Student("David", 90, 100)

Bob = Student("Bob", 60, 80)

David.print_data()

Bob.print_data()

Comments on Student Example

• Calling a function with the same name as the
name of the class creates an object of that
class; the actual function called is the __init__
function within the class (__init__ is the class
constructor)

• Each time the constructor is called, a different
object of that type is created; these different
objects will generally have different member
data

Comments on Student Example

• Note that the course name is kept common to all
students (all instances of the class)

• However, the two test grades are specific to each
student

• The “self” keyword has the same role as “this” in C+
+/Java --- it points to a specific instance of the class.
It is automatically supplied as the first argument to
any class member function, and it must be used
when referring to any member data/function of a
class (even if it's member data shared among all
instances of a class)

Operator Overloading

• Certain operators (like ==, +, -, *) can be
overloaded to work on user-defined datatypes
(classes) as well as built-in types like integers

• To see if two objects are equal, overload the
== operator and implement a function which
can compare two instances of your user-
defined datatype (class). This is done by
defining the __eq__ function for the class; see
next example

Point example

class Point:
 def __init__(self, x=0, y=0):
 self.x = x
 self.y = y

 def __eq__(self, other):
 return self.x == other.x and self.y == other.y

a = Point()
b = Point(1,1)

print a==b

Fancier equals checking

• We could be a little safer and make sure the
comparison is actually of two objects of the
same type, otherwise return a flag indicating
that this comparison isn't implemented by our
Point class:

if not isinstance(other, Point):
 return notImplemented
else
 return self.x == other.x and self.y == other.y

Overloading other comparisons

• There are other comparison operators we can
overload for user-defined datatypes:
__lt__(self, other) x < y
__le__(self, other) x<= y
__eq__(self, other) x == y
__ne__(self, other) x != y
__ge__(self, other) x >= y
__gt__(self, other) x > y

No Overloading Call Signatures

• In other languages like C++, we can overload
member functions to behave differently depending
on how many arguments (and what types of
arguments) are passed to the function

• Python doesn't work like this: the last function
defined with a given name is the one that will be
used:
class A:
 def method(self, x):
 …
 def method(self, x, y):
 # this definition overrides the previous one

Inheritance

• A class can inherit from another class,
allowing a class hierarchy

• If class A inherits from class B, then class B is
a superclass of class A, and class A
automatically has access to all the member
data and member functions of class B

• If class A redefines some member function or
member data which is also present in class B,
then the definition in A takes precedence over
that in class B

Inheritance Example
class Class1:
 def __init__(self, data=0):
 self.data = data

 def display(self):
 print self.data

class Class2(Class1):
 def square(self):
 self.data = self.data * self.data

a = Class2(5)
a.square() # member function specific to Class2
a.display() # inherited member function from Class1

Alternative Syntax for Method Calls

• Instead of calling methods through their objects, we can also
call them through the class name:
x = SomeClass()
x.method1()
-or-
SomeClass.method1(x)

• Useful if we need to guarantee that a superclass constructor
runs as well as the subclass constructor:
class Class2(Class1):
 def __init__(self, data):
 Class1.__init__(self, data)
 … new code for Class2 here...

__getitem__

• We can overload array indexing syntax with __getitem__

class testit:
 def __getitem__(self, n):
 return self.data[n]

 A = testit()
 A.data = “junk”

 A[1]
 'u'

__getattr__ and __setattr_

• These functions catch attribute references for
a class. __getattr__ catches all attempts to
get a class attribute (via, e.g., x.name, etc.),
and __setattr__ catches all attempts to set a
class attribute (e.g., x.name = “Bob”)

• Must be careful with __setattr__, because all
instances of self.attr=value become
self.__setattr__('attr', value), and this can
prevent one from writing code such as
self.attr=value in the definition of __setattr__!

Using __setattr__

Class SomeClass:
def __setattr__(self, attr, value):
 self.__dict__[attr] = value

this avoids syntax like self.attr = value
which we can't have in the definition

__str__ and __repr__
• __str__ is meant to provide a “user friendly” representation of

the class for printing

• __repr__ is meant to provide a string which could be
interpreted as code for reconstructing the class instance

class Number:
 def __init__(self, data):
 self.data = data
 def __repr__(self):
 return 'Number(%s)' % self.data

a = Number(5)
print a
>> Number(5)

destructors

• __del__ is a destructor, which is called
automatically when an instance is being
deleted (it is no longer being used, and it's
space is reclaimed during “garbage
collection”)

• Python normally cleans up the memory used
by an instance automatically, so this kind of
thing isn't usually necessary to put in a
destructor; hence, they may be less
necessary than in, for example, C++

Chapter 13: CGI Programming

● Intro to CGI programs
● Python CGI packages
● Example CGI Form script

Intro to CGI Programming

• CGI: Common Gateway Interface

• Usually need to be executed
from /var/www/cgi-bin on a web server

• Standard for Web scripts and Web forms

• Output: the first line of output needs to identify
the text as HTML. The rest should (usually)
actually by HTML-formatted

• Input: there are two ways to pass information
to a web script: GET and POST

Output

• First line:
print “Content-type: text/html\n” # need \n

• Everything else will be passed along for
interpretation by the client web browser. Plain
text will usually print ok, but typically you want
to format as Hypertext Markup Language
(HTML)

• These notes won't explain basic HTML; that
information is easy to find elsewhere

Input

• GET: keyword/value pairs can come in
through the “GET” protocol. They are passed
to the script as add-ons to the URL, e.g.:
http://my.server/cgi-bin/script.py?name=David

• POST: The data is passed in via a form which
starts with this HTML code:
<FORM method=POST action=”testcgi.py”>

http://my.server/cgi-bin/script.py?name=David

GET input gotchas
• With GET, be careful because certain

characters need to be “escaped” if they are to
be passed along in the URL. This can be
done easily and automatically by

import urllib
tmpstr = '' % \
 (urllib.quote_plus(name))

• While we're on the subject, items going into
HTML may also need to be escaped; can do
this with cgi.escape(). Does mostly, but not
exactly, the same as urllib.quote_plus()

Form example

POST input• htmlform = """

<FORM method=POST action="testcgi.py">

<P>

<table>

<tr><td>Name:</td>

<td><input type=text name=name size=40 value="%(name)s" /></td></tr>

<tr><td>Job:</td>

<td><input type=text name=job size=40 value="%(job)s" /></td></tr>

<tr><td>Years with company:</td>

<td>

<select name=years value=%(years)s>

 <option value="1" %(years1)s>1</option>

 <option value="2" %(years2)s>2</option>

 <option value="3" %(years3)s>3</option>

</select>

</td></tr>

<tr><td>Manager:</td>

<td><input type=checkbox name=manager value="1" %(managerchecked)s></td>

</tr>

<tr><td><input type="submit" name="send" value="Submit"></td>

"""
print htmlform % suppdata

Reading the input
• Python provides a unified module which can

parse both GET and POST input (or both
simultaneously)

import cgi # to parse CGI
import cgitb # to print CGI error messages
cgitb.enable()

form = cgi.FieldStorage() # parse form

Reading the input
• Getting the data out of the form

data = {}
for field in ('name', 'job', 'years', 'manager'):
 if not form.has_key(field):
 data[field] = ""
 else:
 if type(form[field]) != list:
 data[field] = form[field].value
 else: # merge lists to string with and's
 values = [x.value for x in form[field]]
 data[field] = ' and '.join(values)

Reading the input

● I like to separate out “metadata” from data. The
'send' field will be set if the form got submitted
(not the first time the form is shown to the user)

suppdata = {}
for field in ('send',):
 if not form.has_key(field):
 suppdata[field] = ""
 else:
 if type(form[field]) != list:
 suppdata[field] = form[field].value
 else:
 values = [x.value for x in form[field]]
 suppdata[field] = ' and '.join(values)

Reading the input
• Fill in more supplementary data; refer back to

the HTML form to see where this all goes in
the form

if data['manager'] == "1":
 suppdata['managerchecked'] = "checked"
else:
 suppdata['managerchecked'] = ""

suppdata['years1'] = ""
suppdata['years2'] = ""
suppdata['years3'] = ""

if data['years'] == "1":
 suppdata['years1'] = "selected"
elif data['years'] == "2":
 suppdata['years2'] = "selected"
elif data['years'] == "3":
 suppdata['years3'] = "selected"

merge all data{} into suppdata{}
suppdata.update(data)

The rest of the script (testcgi.py)
if (suppdata['send'] == "Submit"):
 # do any testing of form data here

 if (data['name'] == "" or data['job'] == ""):
 print html_header
 print htmlform % suppdata
 print "Error: must fill in name and job fields!"
 print html_footer

 else:
 # upload data to a database here
 # print ok to the user
 print html_header
 print "Adding data to the database.
\n"
 print "name=%s, job=%s, years=%s.
\n" % \
 (data['name'], data['job'], data['years'])
 print "Is",
 if (data['manager'] == "1"):
 print "a manager.
\n"
 else:
 print "not a manager.
\n"
 print "New data submitted!
\n"
 print html_footer

else: # if it wasn't submitted
 print html_header
 print htmlform % suppdata
 print html_footer

