Geometry Analysis Program

C. David Sherrill
School of Chemistry and Biochemistry
Georgia Institute of Technology

Last Revised on 5 June 2001

Goals: Write a computer program to take a set of atomic symbols and Cartesian coordinates for a collection of atoms and determine all possible interatomic distances and bond angles. Assume the coordinates are provided in Angstroms.

Procedure:

1. Read in Cartesian coordinates from an ASCII file in the so-called XYZ format. The first line of this file is just an integer telling how many atoms there are in the file. Each subsequent row i contains an atomic symbol (e.g., $\mathrm{C}, \mathrm{N}, \mathrm{O}$) and a set of coordinates $\left(x_{i}, y_{i}, z_{i}\right)$ for atom i.
2. Calculate all possible interatomic distances

$$
\begin{equation*}
R_{i j}=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}} \tag{1}
\end{equation*}
$$

3. Calculate all possible bond angles between atoms i, j, and k :

$$
\begin{align*}
R_{i k}^{2} & =R_{i j}^{2}+R_{j k}^{2}-2 R_{i j} R_{j k} \cos \phi_{i j k} \tag{2}\\
\cos _{i j k} & =\hat{r}_{j i} \cdot \hat{r}_{j k} \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
\vec{r}_{i j}=\left(x_{j}-x_{i}\right) \hat{i}+\left(y_{j}-y_{i}\right) \hat{j}+\left(z_{j}-z_{i}\right) \hat{k} \tag{4}
\end{equation*}
$$

For additional challenge, try the following: Define unit vectors $\hat{e}_{i j}$ pointing in the direction between atoms i and j, as

$$
\begin{equation*}
\hat{e}_{i j}=\vec{r}_{i j} / R_{i j} . \tag{5}
\end{equation*}
$$

1. Calculate all possible out-of-plane angles,

$$
\begin{equation*}
\sin \theta_{i j k l}=\frac{\hat{e}_{l j} \times \hat{e}_{l k}}{\sin \theta_{j l k}} \cdot \hat{e}_{l i} \tag{6}
\end{equation*}
$$

2. Calculate all possible torsional angles,

$$
\begin{equation*}
\cos _{i j k l}=\frac{\left(\hat{e}_{i j} \times \hat{e}_{j k}\right) \cdot\left(\hat{e}_{j k} \times \hat{e}_{k l}\right)}{\sin \phi_{i j k} \sin \phi_{j k l}} . \tag{7}
\end{equation*}
$$

3. Find the center of mass of the molecule.

$$
\begin{align*}
X_{\text {c.m. }} & =\frac{\sum_{i} m_{i} x_{i}}{\sum_{i} m_{i}}, \tag{8}\\
Y_{\text {c.m. }} & =\frac{\sum_{i} m_{i} y_{i}}{\sum_{i} m_{i}}, \tag{9}\\
Z_{\text {c.m. }} & =\frac{\sum_{i} m_{i} z_{i}}{\sum_{i} m_{i}} . \tag{10}
\end{align*}
$$

4. Shift the atomic coordinates to the new center-of-mass reference frame.
5. Calculate the elements of the moment of inertia tensor

$$
\begin{align*}
I_{\alpha \alpha} & =\sum_{i} m_{i}\left(\beta_{i}^{2}+\gamma_{i}^{2}\right) \tag{11}\\
I_{\alpha \beta} & =-\sum_{i} m_{i} \alpha_{i} \beta_{i} \tag{12}
\end{align*}
$$

where α, β, γ are Cartesian coordinates in the new center-of-mass frame.
6. Diagonalize the moment of inertia tensor to obtain the principal moments of inertial. You can find a matrix diagonalizer in the PSI libraries on in the BLAS libraries.

$$
\begin{equation*}
I_{a} \leq I_{b} \leq I_{c} \tag{13}
\end{equation*}
$$

7. Determine the molecular type
(a) diatomic
(b) linear
(c) asymmetric top
(d) symmetric top (oblate or prolate)
(e) spherical top
8. Determine the rotational constants in cm^{-1} and MHz .

$$
\begin{align*}
& A \geq B \geq C, \tag{14}\\
& A=\frac{h}{8 \pi^{2} I_{a}}, \tag{15}\\
& B=\frac{h}{8 \pi^{2} I_{b}}, \tag{16}\\
& C=\frac{h}{8 \pi^{2} I_{c}} . \tag{17}
\end{align*}
$$

Additional Information: See Molecular Vibrations, E. Bright Wilson, J. C. Decius, and Paul C. Cross (Dover, New York, 1980).

Acknowledgment: This programming exercise comes from Dr. Yukio Yamaguchi, University of Georgia.

